ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons.
نویسندگان
چکیده
Mutations in several genes, including Parkin, PTEN-induced kinase 1 (Pink1) and DJ-1, are associated with rare inherited forms of Parkinson's disease (PD). Despite recent attention on the function of these genes, the interplay between DJ-1, Pink1 and Parkin in PD pathogenesis remains unclear. In particular, whether these genes regulate mitochondrial control pathways in neurons is highly controversial. Here we report that Pink1-dependent Parkin translocation does occur in mouse cortical neurons in response to a variety of mitochondrial damaging agents. This translocation only occurs in the absence of antioxidants in the neuronal culturing medium, implicating a key role of reactive oxygen species (ROS) in this response. Consistent with these observations, ROS blockers also prevent Parkin recruitment in mouse embryonic fibroblasts. Loss of DJ-1, a gene linked to ROS management, results in increased stress-induced Parkin recruitment and increased mitophagy. Expression of wild-type DJ-1, but not a cysteine-106 mutant associated with defective ROS response, rescues this accelerated Parkin recruitment. Interestingly, DJ-1 levels increase at mitochondria following oxidative damage in both fibroblasts and neurons, and this process also depends on Parkin and possibly Pink1. These results not only highlight the presence of a Parkin/Pink1-mediated pathway of mitochondrial quality control (MQC) in neurons, they also delineate a complex reciprocal relationship between DJ-1 and the Pink1/Parkin pathway of MQC.
منابع مشابه
Correction: Behavioral and Neurotransmitter Abnormalities in Mice Deficient for Parkin, DJ-1 and Superoxide Dismutase
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by loss of neurons in the substantia nigra that project to the striatum and release dopamine. The cause of PD remains uncertain, however, evidence implicates mitochondrial dysfunction and oxidative stress. Although most cases of PD are sporadic, 5-10% of cases are caused by inherited mutations. Loss-of-function mu...
متن کاملNuclear translocation of DJ-1 during oxidative stress-induced neuronal cell death.
Loss-of-function mutations in the PARK7/DJ-1 gene cause early onset autosomal-recessive Parkinson disease. DJ-1 has been implicated in protection of neurons from oxidative stress and in regulation of transcriptional activity. However, whether there is a relationship between the subcellular localization of DJ-1 and its function remains unknown. Therefore, we examined the subcellular localization...
متن کاملDJ-1-Dependent Regulation of Oxidative Stress in the Retinal Pigment Epithelium (RPE)
BACKGROUND DJ-1 is found in many tissues, including the brain, where it has been extensively studied due to its association with Parkinson's disease. DJ-1 functions as a redox-sensitive molecular chaperone and transcription regulator that robustly protects cells from oxidative stress. METHODOLOGY Retinal pigment epithelial (RPE) cultures were treated with H2O2 for various times followed by bi...
متن کاملIsocitrate protects DJ-1 null dopaminergic cells from oxidative stress through NADP+-dependent isocitrate dehydrogenase (IDH)
DJ-1 is one of the causative genes for early onset familiar Parkinson's disease (PD) and is also considered to influence the pathogenesis of sporadic PD. DJ-1 has various physiological functions which converge on controlling intracellular reactive oxygen species (ROS) levels. In RNA-sequencing analyses searching for novel anti-oxidant genes downstream of DJ-1, a gene encoding NADP+-dependent is...
متن کاملRole of Oxidative Stress in Parkinson's Disease
Oxidative stress plays an important role in the degeneration of dopaminergic neurons in Parkinson's disease (PD). Disruptions in the physiologic maintenance of the redox potential in neurons interfere with several biological processes, ultimately leading to cell death. Evidence has been developed for oxidative and nitrative damage to key cellular components in the PD substantia nigra. A number ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 21 22 شماره
صفحات -
تاریخ انتشار 2012